Apollo Ends at Venus: A 1967 Proposal for Single-Launch Piloted Venus Flybys in 1972, 1973, and 1975

Probe release: the astronauts on board the Apollo Applications Program Venus flyby spacecraft release the last of their atmosphere-entry probes a few hours before closest approach to the cloudy planet. Meanwhile, their optical telescope, scanning radar, and other instruments switch to high-rate data-collection mode. Image credit: William Black.
For many space planners in the early 1960s, piloted Solar System exploration using large "post-Saturn" rockets and nuclear-powered spaceships seemed a natural follow-on to the Apollo lunar program. In November 1964, however, NASA Headquarters announced that its post-Apollo space program would emphasize Earth-orbital space stations based on Saturn/Apollo hardware. Their chief aim: to find space benefits for people on Earth. Agency officials explained that this was in keeping with the wishes of President Lyndon Baines Johnson. NASA critics, meanwhile, derided what they saw as its lack of an overarching goal beyond finding new uses for Apollo hardware.

The Headquarters announcement, the first high-level step on the road to the Apollo Applications Program (AAP), undermined planetary exploration planning. Even before the announcement, however, die-hard Mars planners had begun to study how Saturn/Apollo hardware could be applied to planetary voyages. In February 1965, just three months after the Headquarters announcement, NASA Marshall Space Flight Center's Future Projects Office completed the first study of Apollo-based piloted Mars and Venus flyby missions.

In February 1967, Jack Funk and James Taylor, engineers in the Advanced Mission Design Branch at NASA's Manned Spacecraft Center (MSC) in Houston, Texas, proposed as AAP's "final goal" a series of three Apollo-based piloted Venus flybys. The missions would depart Earth during 30-day launch periods beginning on 4 April 1972, 14 November 1973, and 7 June 1975. Each would require a single unmodified three-stage Saturn V rocket of the type used to launch Apollo missions to the Moon, a lightly modified Apollo Command and Service Module (CSM), and a Mission Module (MM) based, perhaps, on the Apollo Orbital Research Laboratory (AORL) under study at the time.

MSC's piloted Venus flyby missions were intended to replace the piloted Mars and Mars/Venus flybys under study by the intercenter NASA Planetary Joint Action Group (JAG). MSC favored a piloted Venus flyby mission followed by a Venus orbiter because they would be of shorter duration and would need less propulsive energy than the Planetary JAG's missions. In MSC's plan, piloted Mars orbiter and piloted Mars landing missions in the late 1970s would follow successful piloted Venus flyby and Venus orbiter missions.

Funk and Taylor's 1972 AAP Venus flyby mission would begin with launch from Cape Kennedy on 2 April 1972. The Saturn V's S-IVB third stage would inject a 66,308-pound CSM with three astronauts on board and a 27,783-pound MM into a 100-nautical-mile circular parking orbit.

The stage would be restarted a few hours later to place itself and its payload into an elliptical orbit with a 70,000-mile apogee (high point above the Earth) and a 48-hour period. Payload injected into the elliptical orbit would total 107,578 pounds, or about 263 pounds beyond expected Apollo Saturn V capacity; Funk and Taylor shrugged off the shortfall, however, saying that it was so small as to be "in the noise level" of their calculations.

Venus or bust. A = J-2 rocket motor; B = Saturn V S-IVB third stage; C = Spacecraft Launch Adapter (contains Mission Module); D = Apollo Command and Service Module spacecraft. Image credit: NASA.
After S-IVB shutdown, the astronauts would detach their CSM from the Spacecraft Launch Adapter (SLA) shroud, turn it end for end, and dock with the MM, which would occupy the volume within the SLA that would contain the Lunar Module during Apollo Moon missions. They would use the CSM to pull the MM free of the spent S-IVB stage, then would transfer to the MM to deploy its twin solar arrays, check out its systems, and perform navigational checks during the 24-hour climb to apogee.

The next day, the astronauts would return to their couches in the CSM as the flyby spacecraft neared apogee. They would then fire the Service Propulsion System (SPS) main engine in the CSM's Service Module (SM) to raise the perigee (low point above Earth) of their spacecraft's orbit and tilt its orbital plane relative to Earth's equator. The drum-shaped SM would contain 40,000 pounds of propellants, enabling a total velocity change of 4800 feet per second.

In addition to refining the flyby spacecraft's trajectory for the Venus injection burn, which would occur at perigee, the apogee maneuver would test the SPS. If the engine failed, the astronauts would abort the mission by discarding the MM and lowering the CSM's perigee into Earth's atmosphere by firing special aft-mounted auxiliary attitude control thrusters near apogee. When the CSM approached perigee 24 hours later, they would cast off the SM and reenter in the conical Command Module (CM).

Trans-Venus Injection scenario. See text for explanation. Image credit: NASA.
If, on the other hand, the SPS performed the apogee maneuver successfully, the flyby spacecraft would reach perigee outside Earth's atmosphere traveling at 9710 feet per second. The astronauts would then ignite the SPS a second time to add a little more than 3000 feet per second to the flyby spacecraft's velocity and depart Earth orbit for Venus on 5 April 1972. Abort using the SPS would remain possible for six minutes after the completion of the Trans-Venus Injection burn; return to Earth following a post-injection abort could last up to two days.

Immediately after the Trans-Venus Injection burn, the astronauts would shut down the CSM to extend its lifetime and move back to the MM. They would reactivate the CSM three times during the 109-day flight to Venus so that they could perform small course correction burns using the SPS. Course correction navigation would be by Earth-based radar backed up by a hand-held sextant and a navigational computer in the MM.

Funk and Taylor calculated that the CSM would need 2000 pounds of extra meteoroid shielding for a Venus mission. Shielding — probably in the form of a Whipple Bumper (a thin layer of metal or plastic sheeting suspended a few inches from the hull that would break up meteoroids, reducing the damage they could inflict on the spacecraft) — would cover the entire CM and the SM tanks and SPS.

Artist William Black's interpretation of the AAP Venus flyby Mission Module (left) is a clever synthesis and expansion of two candidate designs portrayed in only modest detail in Funk and Taylor's report. The first was a drum-shaped module wasteful of the limited volume within the Spacecraft Launch Adapter (SLA); the second was bell-shaped and thus structurally complex.
Emphasis on the Mission Module: following detachment from the Saturn V S-IVB stage, the AAP Venus flyby Mission Module would deploy its appendages. These would include four dish antennas for receiving data from atmosphere-entry probes (the probes are shown here arrayed around a circular airlock hatch); a mapping radar antenna (see previous image); twin rectangular solar arrays on booms for making electricity; a tracking optical telescope; and a high-gain radio antenna for communication with Earth. Image credit: William Black.
Funk and Taylor based their mission's 3400-pound science experiment package on the Mars flyby science package proposed in the October 1966 Planetary JAG report. It would include impactor probes for obtaining atmosphere measurements during descent, soft landers, cameras, and, if weight growth during its development could be strictly controlled, a 40-inch telescope, but would lack the Mars flyby mission's sample return lander. The MIT-built CSM guidance computer would be upgraded and equipped with a tape recorder to allow it to collect and store data from the science instruments for return to Earth.

The astronauts would perform solar, space environmental, and astronomical observations during the Earth-Venus transfer and would begin deploying automated probes a few days before the 23 August 1972 Venus flyby. Closest approach to the planet would occur over the day side.

Using the SPS, the astronauts would perform three small course corrections during the 250-day voyage to Earth. As the homeworld grew in their viewports, the astronauts would transfer to the CSM and undock from the MM. On 30 March 1973, just 359 days after Earth launch, they would carry out a final course correction, then would detach the CM from the SM and re-enter Earth's atmosphere. A beefed-up heat shield would permit the CM to withstand atmosphere reentry at up to 45,000 feet per second (that is, about 9000 feet per second faster than Apollo lunar return speed).

Trajectory and key dates for the Venus flyby mission departing Earth on 5 April 1972. Venus flyby occurs on 23 August 1972; Earth return on 30 March 1973. Image credit: NASA.
The second mission in the series would depart Earth on 14 November 1973 and fly past Venus 104 days later. It would reach Earth 252 days after that, for a total mission duration of 356 days. The third mission would leave Earth on 7 June 1975. Passage to Venus would need 115 days and return to Earth 252 days, for a total duration of 367 days.

The 1973 mission Venus flyby spacecraft would need the most propulsive energy to depart Earth orbit for Venus — a total of 12,150 feet per second, or about 70 feet per second more than the 1972 spacecraft and 300 feet per second more than the 1975 spacecraft. The 1972 CM would have the fastest Earth-atmosphere reentry speed (45,000 feet per second), while the 1973 CM would reenter moving at 44,500 feet per second and the 1975 CM at 44,000 feet per second.

Funk and Taylor's AAP Venus flyby plan stands out from the many 1960s plans for piloted flybys because it has been brought to life as fiction. In his 2017 alternate history Island of Clouds: The Great 1972 Venus Flyby, author Gerald Brennan puts narrative meat on the technical skeleton Funk and Taylor presented in their MSC Internal Note.

Told in the first person by a believable fictional Buzz Aldrin, Brennan's tale owes much to the Apollo 11 moonwalker's autobiography Return to Earth (1973). Its focus on exploration far from rescue puts Island of Clouds in a class with Hank Searls' classic 1964 adventure The Pilgrim Project (described elsewhere in this blog — click on the last link under "More Information" below).

Six months after Funk and Taylor completed their study, AAP bore the brunt of more than $500 million in Congressional cuts to NASA's Fiscal Year 1968 budget. The program, which for a time in 1966 had been planned to include some 40 Earth-orbital and lunar missions, shrank rapidly during 1968-1969. It was officially renamed the Skylab Program in February 1970. Between May 1973 and February 1974, three three-man crews occupied the Skylab Orbital Workshop in Earth orbit for a total of 173 days.

Robot probes, not astronauts, explored Venus in the 1970s. The Soviet Union's Venera 8 took advantage of the 1972 launch opportunity, leaving Baikonur Cosmodrome in Central Asia on 27 March 1972. The armored probe landed on Venus and transmitted data on its brutal surface conditions for 50 minutes. The U.S. Mariner 10 probe (launched 3 November 1973) flew past Venus en route to Mercury on 5 February 1974.

After skipping the 1973 Venus opportunity to launch Mars probes, the Soviets launched Venera 9 and Venera 10 on 8 and 14 June 1975, respectively. Each consisted of an orbiter and a lander. The Venera 9 lander transmitted the first picture of the Venusian surface on 22 October. Venera 10's lander set a new endurance record on 23 October, returning data from the surface for 65 minutes before its orbiter passed out of radio range.

The first, fourth, and fifth images in this post are Copyright 2017 by William Black (http://william-black.deviantart.com/) and are used by special arrangement with the artist.

Source

Preliminary Mission Study of a Single-Launch Manned Venus Flyby with Extended Apollo Hardware, MSC Internal Note No. 67-FM-25, J. Funk & J. Taylor, Advanced Mission Design Branch, Mission Planning and Analysis Division, NASA Manned Spacecraft Center, Houston, Texas, 13 February 1967.

More Information

After EMPIRE: Using Apollo Technology to Explore Mars and Venus (1965)

Triple Flyby: Venus-Mars-Venus Piloted Missions in the Late 1970s/Early 1980s (1967)

Space Race: The Notorious 1962 Proposal to Launch an Astronaut on a One-Way Trip to the Moon

Venus As Proving Ground: A 1967 Proposal for a Piloted Venus Orbiter

Mariner II during its final days on Earth, July-August 1962. Image credit: NASA.
NASA won a significant prestige victory over the Soviet Union on 14 December 1962, when Mariner II flew past Venus at a distance of 22,000 miles. The 203.6-kilogram spacecraft, the first successful interplanetary probe in history, left Cape Canaveral, Florida, on 27 August 1962. Controllers and scientists breathed a sigh of relief as it separated from its Atlas-Agena B launch vehicle; failure of an identical rocket had doomed its predecessor, Mariner I, on 22 July 1962.

Astronomers knew that Venus was nearly as large as Earth, but little else was known of it, for its surface is cloaked in dense white clouds. Many supposed that, because it is a near neighbor and similar in size to our planet, Venus would be Earth's twin. As late as 1962, some still hoped that astronauts might one day walk on Venus under overcast skies and perhaps find water and life.

Data from Mariner II effectively crossed Venus off the list of worlds where astronauts might one day land. As had been suspected since 1956, when radio astronomers first detected a surprising abundance of three-centimeter microwave radiation coming from Venus, its surface temperature was well above the boiling point of water. Mariner II data indicated a temperature of at least 800° Fahrenheit (427° Celsius) over the entire planet. Cornell University astronomer Carl Sagan explained the intense heat: Venus has a dense carbon dioxide atmosphere that behaves like glass in a greenhouse.

Venus's role in piloted spaceflight thus shifted from a destination in its own right to a kind of "coaling station" for spacecraft traveling to and from Mars. Mission planners proposed ways that a piloted Mars spacecraft might use the gravity and orbital momentum of Venus to alter its course, slow down, or speed up without expending rocket propellants.

Some also began to view Venus as a proving ground for incremental space technology development. In 1967, NASA Lewis Research Center (LeRC) engineer Edward Willis proposed a manned Venus orbiter based on an "Apollo level of propulsion technology" for the period immediately after the Apollo moon missions.

Willis rejected piloted Mars and Venus flyby missions, which were under consideration as a post-Apollo NASA goal at the time he wrote his paper, in large part because he believed that they would not provide enough exploration time near the target planet. Though he sought a piloted Venus orbiter, Willis questioned the wisdom of launching an equivalent mission to Mars. "It is generally felt," he explained, "that the. . .objective of a manned Mars flight should be a manned landing and surface exploration," not merely a stint in Mars orbit.

The NASA LeRC engineer calculated that the mass of propellants needed for a piloted Venus orbiter would be considerably less than for a piloted Mars orbiter even in the most energetically demanding Earth-Venus minimum-energy transfer opportunity. This meant that a piloted Mars orbiter would always need more costly heavy-lift rocket launches to boost its propellants and components into low-Earth orbit than would a piloted Venus orbiter.

A piloted Mars landing mission, for its part, would be "still heavier than the [Mars] orbiting mission," so probably would "best be done using nuclear propulsion." Whereas chemical rockets generally need two propellants — fuel plus oxidizer to "burn" the fuel — nuclear-thermal rockets need only one working fluid. Liquid hydrogen is most often cited, though liquid methane is also mentioned.

Because they need to lug around the Solar System only one propellant, nuclear-thermal rockets are inherently more efficient than chemical rockets. Nuclear-thermal propulsion would, however, need more development and testing before it could propel humans to Mars. Nuclear-thermal propulsion was unlikely to be ready by the time Apollo ended; therefore, Willis wrote, "in terms of [technological] difficulty and timing, the Venus orbiting mission has a place ahead of the Mars orbiting and landing missions."

The key to a Venus orbiter with the lowest possible propellant mass, Willis explained, was selection of an appropriate Venus orbit. Entering and departing a highly elliptical orbit about Venus would need considerably less energy (hence, propellants) than would entering and departing a close circular Venus orbit. He thus proposed a Venus orbit with a periapsis (low point) of 13,310 kilometers (1.1 Venus radii) and a apoapsis (high point) of 252,890 kilometers (20.9 Venus radii).

The 129,250-pound (dry weight) Earth-departure stage (A in the cutaway drawing above) and the Venus orbiter spacecraft would be launched into Earth orbit separately. After the stage was loaded with 942,500 pounds of propellants in orbit, it would link up with the spacecraft. The stage would expend 930,000 pounds of propellants to increase the spacecraft's speed by 2.8 miles per second, launching it out of Earth orbit toward Venus. It would stay attached to the spacecraft until after a course-correction burn halfway to Venus that would expend an additional 12,500 pounds of propellants. The 332,000-pound Venus orbiter spacecraft, which could reach Earth orbit atop a single uprated Saturn V rocket, would comprise 10,000 pounds of Venus atmosphere probes (B), the 103,000-pound Venus arrival rocket stage (C), a 30,000-pound Venus scientific remote sensor payload (D), the 95,120-pound Venus departure rocket stage (E), the 4,000-pound Venus-Earth course-correction stage (F denotes tanks; engines are too small to be seen at this scale), the Command Module (G) for housing the crew, and the Earth atmosphere entry system (H), a 15,250-pound lifting-body with twin winglets for returning the crew to Earth's surface at the end of the mission. Of the Command Module's 66,000-pound mass, food, water, and other expendable supplies would account for 27,000 pounds. Image credit: NASA.
Willis calculated that a Venus orbiter based on Apollo-level technology, departing from a 400-mile-high circular Earth orbit, staying for 40 days in his proposed Venus orbit, and with a total mission duration of 565 days, would have a mass of 1.412 million pounds just prior to Earth-orbit departure in the energetically demanding 1980 Earth-Venus transfer opportunity. An equivalent Mars orbiter launched in 1986, the least demanding Earth-Mars transfer opportunity of any Willis considered, would have a mass in Earth orbit about 70% greater — about 2.4 million pounds.

As the spacecraft approached Venus, its crew would turn it so that the Venus arrival stage faced forward, then would ignite the stage as it passed closest to Venus to slow the spacecraft by 0.64 miles per second. This would enable Venusian gravity to capture the spacecraft into its elliptical operational orbit. The maneuver would expend 91,950 pounds of propellants. The spent arrival stage would remain attached to the spacecraft at least until the Venus atmosphere entry probes were released.

The spacecraft would complete two orbits of Venus during its 40-day stay. Time within 26,300 kilometers (three Venus radii) of the planet would total two days; that is, several times longer than a piloted Venus flyby could spend near the planet (the Willis orbiter would not, however, pass as close to Venus as would a Venus flyby spacecraft). Throughout their stay in orbit, the crew would turn remote sensors toward Venus. During the two periapsis passes, the astronauts would use radar to explore the mysterious terrain hidden beneath the Venusian clouds.

Farther out from the planet, near apoapsis, they would deploy the Venus atmosphere entry probes. Their spacecraft's distant apoapsis, combined with the planet's slow rotation rate (once per 243 Earth days), would enable them to remain in direct radio contact with their probes for days — unlike a piloted Venus flyby spacecraft, which could at best remain in contact with its probes for a few hours.

At the end of their stay in Venus orbit, the crew would cast off the Venus scientific payload and ignite the Venus departure stage at periapsis, expending 86,970 pounds of propellants and adding 1.14 miles per second to their speed. During the trip home, which would take them beyond Earth's orbit, they would discard the Venus departure stage and perform a course correction, if one were needed, using the small course correction stage attached to the Command Module.

Near Earth, the crew would separate from the Command Module in the lifting-body and enter the atmosphere at a speed of 48,000 feet per second. After banking and turning to shed speed, they would glide to a land landing, bringing to a triumphant conclusion humankind's historic first piloted voyage beyond the Moon.

Source

Manned Venus Orbiting Mission, NASA TM X-52311, E. Willis, 1967.

More Information

Centaurs, Soviets, and Seltzer Seas: Mariner II's Venusian Adventure (1962)

Triple-Flyby: Venus-Mars-Venus Piloted Missions in the Late 1970s/Early 1980s (1967)

Floaters, Armored Landers, Radar Orbiters, and Drop Sondes: Automated Probes for Piloted Venus Flybys (1967)

Things to Do During a Venus-Mars-Venus Piloted Flyby Mission (1968)

Two for the Price of One: 1980s Piloted Mars-Venus Missions With Stopovers at Mars and Venus (1969)

"Still Under Active Consideration": Five Proposed Earth-Orbital Apollo Missions for the 1970s (1971)

The Skylab 2 Apollo CSM and Saturn IB launcher stand ready atop the "milk stool" on Pad 39B at NASA's Kennedy Space Center, May 1973. Image credit: NASA.
From its conception in 1959 until President John F. Kennedy's 25 May 1961 call to put a man on the Moon, Apollo was seen mainly as an Earth-orbital spacecraft. NASA intended to use Apollo in the second and third phases of its planned 1960s piloted space program. The first phase, characterized by suborbital flights lasting minutes and sorties into Earth orbit lasting at most a few days, would be accomplished by brave pioneers in missile-launched single-seater Mercury capsules.

In the second phase, three astronauts would live and work on board Apollo spacecraft for ever-longer periods. They would use a pressurized Mission Module (MM) launched attached to their spacecraft as a small space station. The third phase would see Apollo spacecraft transport crews to and from an Earth-orbiting space station. Cargo bound for the station would ride in the MM. An Apollo circumlunar mission — a flight around the Moon without capture into lunar orbit — was an option, but was considered unlikely before 1970.

Simplified cutaway of the General Electric D-2 Apollo, perhaps the best known of the pre-Moon program Apollo designs. Colored lines represent separation planes: orange is the spacecraft/launch vehicle separation plane; red is the abort separation plane (two "pusher" solid-propellant abort rockets are visible on the outside of the Service Module); green is the shroud/Service Module separation plane; and blue is the Mission Module/Command Module separation plane. In the event of a launch abort, the part of the Service Module to the right of the red line would remain attached to the launch vehicle. During reentry, the spacecraft would first split along the green line, then the Command Module would separate from the Mission Module along the blue line. The shroud covering the Command Module during flight would remain with the Mission Module. The Command Module would lower on parachutes and perform a land landing while the Service Module and Mission Module/shroud would both burn up. Image credit: General Electric/DSFPortree.
Following studies that lasted six months, in mid-May 1961 General Electric (GE), The Martin Company, and Convair submitted Apollo spacecraft designs suited to NASA's three-phase plan. In the event, none of the designs left the drawing board; after Apollo became NASA's lunar landing mission spacecraft, the agency funded new studies and selected North American Aviation (NAA) as its Apollo spacecraft contractor.

Initially, NASA intended to land NAA's Apollo on the Moon atop a descent stage with landing legs. In July 1962, however, after more than a year of sometimes acrimonious debate, the space agency selected Lunar Orbit Rendezvous (LOR) as its lunar landing mission mode. NAA's Command and Service Module (CSM) spacecraft became the LOR mission's Moon-orbiting mother ship, and to Grumman's bug-like Lunar Module (LM) went the honor of landing on the Moon.

Before the Lunar Module. Image credit: NASA.
As flown, the CSM, which measured a little more than 11 meters long, comprised the conical Command Module (CM) and the drum-shaped Service Module (SM). The MM of the May 1961 GE, Martin, and Convair designs was judged unnecessary for lunar landing missions. In fact, at first some sources perceived the LM to be the MM's replacement.

The CM's nose carried a probe docking unit, and at the aft end of the SM was mounted the Service Propulsion System (SPS) main engine. The SPS remained sized for CSM launches from the lunar surface, which meant that it was more powerful than necessary for CSM insertion into and escape from lunar orbit.

Technical details of the Apollo Command and Service Module (CSM) spacecraft configured for lunar missions. Image credit: NASA.
The CM also included a pressurized crew compartment, crew couches, flight controls, a compact guidance computer, rendezvous aids, a bowl-shaped heat shield for Earth atmosphere reentry, reentry batteries, and parachutes for descent to a gentle splashdown at sea.

The SM, which was discarded before atmosphere reentry, included propellant tanks, fuel cells for making electricity and water, fuel cell reactants (liquid oxygen and liquid hydrogen), four attitude-control thruster quads, radiators for discarding excess heat generated by on board systems, a high-gain radio antenna, and room for a Scientific Instrument Module (SIM) Bay. An umbilical beneath a streamlined housing linked CM and SM.

Almost all piloted Apollo Earth-orbital missions were launched atop two-stage Saturn IB rockets. The sole exception was Apollo 9 (3-13 May 1969), which used NASA's fourth Saturn V. All Apollo lunar missions left Earth on three-stage Saturn V rockets.

Apollo 7 and Apollo 9 were test flights, so their CSMs operated exclusively in low-Earth orbit. This image shows the CM of the Apollo 9 CSM Gumdrop as viewed from the LM Spider in May 1969. Apart from thruster quads and antennas, very little of Gumdrop's SM is visible. No other Apollo spacecraft would operate only in low-Earth orbit until the Skylab 2 CSM flew in May 1973. Image credit: NASA.
The United States began to abandon the technology of piloted lunar exploration by late 1967, nearly a year before the first astronauts reached Earth orbit in an Apollo CSM (Apollo 7, 11-22 October 1968). Abandonment of the Moon began with deep cuts in the Apollo Applications Program (AAP), the planned successor to the Apollo lunar program. Ambitious two-week stays on the Moon were among the first AAP missions to feel the budget-cutters' blades.

In early 1970, NASA brought together the parts of AAP that survived — several space station-related Earth-orbital missions — to form the Skylab Program, which was expected to include at least one and possibly two temporary Skylab Orbital Workshops. The first, Skylab A, was meant to receive at least three Apollo CSMs, each bearing a three-man crew, over a period of about nine months.

By late 1970, with just two Apollo Moon landings (Apollo 11 and Apollo 12) and the Apollo 13 accident under its belt, NASA cancelled three lunar landing missions. Apollo 20, the planned final Apollo lunar mission, was cancelled in early 1970 to free up its Saturn V rocket to launch Skylab A. Apollo 15, the planned fourth and last walking mission, was cancelled in September 1970, as was Apollo 19. NASA Administrator Thomas Paine dropped the missions at least partly in an attempt to to gain President Richard Nixon's support for a large permanent space station. The space agency renumbered the surviving missions so that Apollo lunar exploration would end with Apollo 17.

On 27 August 1971, Philip Culbertson, director of the Advanced Manned Missions Program Office at NASA Headquarters in Washington, DC, dispatched a letter to Rene Berglund, Manager of the Space Station Project Office at NASA's Manned Spacecraft Center (MSC) in Houston, Texas. In it, he outlined five Earth-orbital CSM missions for the 1970s that were "still under active consideration" at NASA Headquarters.

Culbertson explained that his letter was meant to "emphasize the importance" of statements he had made in a telephone conversation with Berglund on 19 August. Based on his letter, Culbertson had phoned Berglund in an effort to impress on him the seriousness of NASA's budget situation.

Space Base: a large permanent Space Station, c. 1980. The nuclear-powered station, shown here passing over Australia and New Guinea, would have had a crew of from 50 to 100 persons. Image credit: NASA.
Berglund and his predecessor at MSC, Edward Olling, had throughout the 1960s remained staunch advocates of a large permanent Earth-orbiting space station. MSC Director Robert Gilruth was also a station supporter. They regarded AAP as at best a not-too-necessary rehearsal for a space station; they saw it at worst as a waste of time and money. They anticipated that before the mid-1970s AAP would draw to a close, freeing up funds for a real space station.

By mid-1971, however, it was increasingly obvious that a permanent space station was of interest neither to Nixon's White House nor the Congress. In fact, a reusable space station logistics resupply and crew rotation vehicle — a Space Shuttle — was by then emerging as the preferred post-Apollo program. The space station — if it were built at all — would have to wait until the Shuttle could launch its modules and bring them together in Earth orbit.

Culbertson referred to an unspecified new contract MSC had awarded CSM contractor North American. He told Berglund that, in "the early stages of your contract. . .you should concentrate on defining the CSM modifications required to support each of the [five] missions and possibly more important defining the effort at North American which would hold open as many as possible of the options until the end of the [Fiscal Year] 1973 budget cycle." Fiscal Year 1973 would conclude on 1 October 1973.

Culbertson's five missions were all to some degree station-related. The first and simplest was an "independent CSM mission for earth observations." Earth observation by astronauts was often mentioned as a space station justification. The mission's CSM would probably include a SIM Bay fitted out with remote-sensing instruments and cameras. At the end of the mission, an astronaut would spacewalk to the SIM Bay to retrieve film for return to Earth in the CM.

A SIM Bay was part of the final three Apollo lunar CSMs. The image above shows the Apollo 15 CSM Endeavour in lunar orbit with its rectangular SIM Bay (upper center) open to space. Image credit: NASA.
The second mission on Culbertson's list was an Apollo space station flight that would have been almost unimaginable at the time Kennedy diverted Apollo to the Moon. It would see a CSM dock in Earth orbit with a Soviet Salyut station.

Salyut 1, the world's first space station, had reached Earth orbit on 19 April 1971. The 15.8-meter-long station remained aloft as Culbertson wrote his letter, but had not been manned since the Soyuz 11 crew of Georgi Dobrovolski, Viktor Patseyev, and Vladislav Volkov had undocked on 29 June 1971, after nearly 24 days in space (at the time, a new world record for human space endurance). The three cosmonauts had suffocated during reentry when a malfunctioning valve caused their capsule to lose pressure, so the Soviet Union halted all piloted missions while the Soyuz spacecraft was put through a significant redesign.

The third Earth-orbital CSM mission on Culbertson's list combined the first two missions. The CSM crew would turn SIM Bay instruments toward Earth before or after a visit to a Salyut.

Culbertson's fourth CSM mission would see CSM-119 dock first with a Salyut for a brief time, then undock and rendezvous with the dormant Skylab A Orbital Workshop. After docking with and reviving Skylab A, CSM-119's crew would live and work on board for an unspecified period.

Image credit: NASA.
NASA planned that, during the three CSM missions to Skylab A in the basic Skylab Program, CSM-119 would stand by as a rescue vehicle capable of carrying five astronauts (Commander, Pilot, and the three rescued Skylab A crewmen). The Salyut-Skylab A mission, which would include no rescue CSM, was planned to begin 18 months after Skylab A reached orbit, or about nine months after the third Skylab A mission returned to Earth.

The fifth and final Earth-orbital CSM mission was really two (or possibly three) CSM missions. A pair of "90 day" CSMs would dock with the Skylab B station while a rescue CSM modified to carry five astronauts stood by. NASA had funded partial assembly of Skylab B so that it would have a backup in the pipeline in case Skylab A failed. Reflecting uncertainty about the availability of Saturn rockets and CSMs, Culbertson gave no date for the Skylab B launch.

Of the five missions Culbertson declared to be on the table in August 1971, none flew. In January 1972, Nixon called on Congress to fund Space Shuttle development, and Congress agreed. Shuttle costs and continued NASA budget cuts pushed even the least complex and cheapest of Culbertson's five missions off the table.

For a short time, his second mission looked to be within reach. Formal joint U.S./U.S.S.R. planning for an Apollo docking with a Salyut was under way when Culbertson wrote his letter. In early April 1972, however, shortly before finalizing its agreement with NASA to conduct a joint Apollo-Salyut mission, the Soviet Union declared the concept to be impractical and offered instead a docking with a Soyuz.

NASA was disappointed to lose an opportunity for an early post-Skylab space station visit; the Nixon White House, on the other hand, saw the mission as a poster child for its policy of detente with the Soviet Union, so any sort of piloted docking mission would do. At the superpower summit in Moscow on 24 May 1972, Nixon and Soviet Premier Alexei Kosygin signed the agreement creating the Apollo-Soyuz Test Project (ASTP).

Skylab A, re-designated Skylab 1 (but more commonly called simply Skylab), reached orbit on 14 May 1973 on a two-stage Saturn V. It suffered damage during ascent, but NASA and its contractors pulled it back from the brink.

Skylab in a photograph taken by the second crew to live on board. Signs of damage the Orbital Workshop suffered during ascent to low-Earth orbit are obvious: one solar array wing is missing (left) and a hastily improvised solar shield stands in for the reflective meteoroid shield that would have protected Skylab's crew volume from the Sun. Image credit: NASA.
The three CSM missions to Skylab spanned 25 May-22 June 1973, 28 July-25 September 1973, and 16 November 1973-8 February 1974, respectively. Leaks in attitude control thrusters on the second CSM to dock with Skylab caused NASA to ready CSM-119 for flight, going so far as to roll it and its Saturn IB rocket out to the launch pad; the leaks stopped by themselves, however, so the rescue CSM remained earthbound.

In August 1973, with Skylab functioning well in Earth-orbit, NASA began to mothball its backup. Several plans were floated for putting Skylab B to use in Earth orbit. In December 1976, however, NASA turned the second Skylab over to the newly opened Smithsonian National Air and Space Museum on the National Mall in Washington, DC.

Apollo CSM-111 was the ASTP prime spacecraft, while CSM-119 was refitted to serve as its backup. In the event, the backup was not needed. CSM-111, officially designated "Apollo" (but sometimes informally called Apollo 18), docked with Soyuz 19 on 17 July 1975. CSM-111 did not include a SIM Bay. The last CSM to reach space undocked on 19 July and, after a period during which its crew performed experiments in the CM, splashed down in the Pacific Ocean near Hawaii on 24 July 1975, six years to the day after Apollo 11, the first Moon landing mission, returned to Earth.

Artist concept of the Apollo-Soyuz docking in Earth orbit, 17 July 1975. Image credit: NASA.
Sources

A Summary of NASA Manned Spacecraft Center Advanced Earth Orbital Missions Space Station Activity from 1962 to 1969, Maxime Faget and Edward Olling, NASA Manned Spacecraft Center, February 1969.

Letter, Philip E. Culbertson to Rene A. Berglund, 27 August 1971.

Skylab News Reference, NASA Office of Public Affairs, March 1973, pp. IV-6 - IV-8.

Living and Working in Space: A History of Skylab, NASA SP-4298, W. David Compton and Charles Benson, NASA, 1983.

Thirty Years Together: A Chronology of U.S.-Soviet Space Cooperation, NASA CR 185707, David S. F. Portree, February 1993, pp. 9-26 (http://ntrs.nasa.gov/search.jsp?R=19930010786 — accessed 10 May 2017).

Mir Hardware Heritage, NASA RP 1357, David S. F. Portree, March 1995, pp. 33-35, 65-72 (http://history.nasa.gov/SP-4225/documentation/mhh/mhh.htm — accessed 10 May 2017).

"Skylab B: Unflown Missions, Lost Opportunities," Thomas Frieling, Quest, Volume 5, Number 4, 1996.

More Information

Space Station Resupply: The 1963 Plan to Turn the Apollo Spacecraft Into a Space Freighter

"Assuming That Everything Goes Perfectly Well In the Apollo Program. . ." (1967)

Apollo's End: NASA Cancels Apollo 15 & Apollo 19 to Save Station/Shuttle (1970)

A Bridge from Skylab to Station/Shuttle: Interim Space Station Program (1971)

Skylab-Salyut Space Laboratory (1972)

What If a Crew Became Stranded On Board the Skylab Space Station? (1972)

Reviving & Reusing Skylab in the Shuttle Era: NASA Marshall's November 1977 Pitch to NASA Headquarters